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Of considavaklas irmporiaste in the deeign of rockac-powared
vehiclies 18 a thorough knowladge of the heating load to thz base
regicn of the vehicle. This heating is due both to radiation by
the hotAexhauat gas and convection by the flow adjacent to the
base. The heating problem bszcomes especially acute in}multi»
nozzle configurations as the underexpanded exhaust plumes impinge
with each other and with the flow axternal to the vehicle,
creating thereby & complex field of interacting txansport processes.

Some idea of this cowplexity may be gained by considering the
region bounded by the rocket hase, the nozzles, and the impinging
jet plumes. Along the plume boundaries - the geowatry of which ave
highly three-~dimensionzl - there is & turbulent mixing and com-
bustioniprogqss which involves simultanecus heat, mass, and momen-
tum transfexrs between the hypersonic rocket exhaust, the base flow,
and the external slipstrxeam. To preserva continuiiy a portion of
ﬁhe gas along the plume inner boundaries must flow back towaxd the
base of the vehiele. As this reverse flow strikes the baszeplate,

a stagnation point flow fizld is established. The bagss-~plate flow
is also three~dimensional, however, since ihe nozzles prevent &
symmetrical venting of the reajected masa flux. The base thus
receives heat both by baundafy layer convection and by radiation

from the hot plume suxfsee through the intervening gas,
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fowe design data  heve buern cbhitainad frow sspaol

studigs of the overall hase heatiag proeess, buit thess have hoen
hampered by the presently linmited zbility to accurately scile
combustion phencmenan. Much fuxther exparimental work on various
‘
details of the heating problem is necsssary and some is pressently
undexway. Verxy little pregress, on the other hand has been madse
thecoretically since one is faced with the interaction of wmany
gomponent processes, each of which represents a maicr effort of
analysis,

Historically, supexsonic wake investigations data back only
about twenty years and; uatil recsntly, have baen rathszy restrictive
in their deacription of ths base flow f%eidc That is, most studies
have characterized the waka region with a single pressure or a
single temperature. This was peimiczible dﬁly hacavse the ssptond~
&ry oxr base flow was a comparatively low speed flow and, in many
instances, of minor importanca. Such simplifizations were included
in the sarly Kexst2 theoxry, as well as the later znalytical work
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on turbulent base flow cof

H

In recent years, ift has been recognized that secondaxy flows
are indeed significant in some caszez (notably in caviti@sﬁ and
walti-nozzle bases7) and therefore theories such as those mantioned
above have bsen unable to dexl with thage imgortant physical
proklems. Thus, the present study was initiated in order toe provids

a more conprehansive theory for turbulent base flowz which cguld

*Superscripts refer to references.
Do




treat the multi-noszle gacuetcy.

As has been previcusly pointed out, the actual base heating
problem is of such extreme complexity that dirsct analyses of the
complete flow appear to have little chznee of sucgess. Consequent-
ly, the general approach of the pressnt investigation was to begin
with a comparatively simple two~dimensional geometry with iscener-
getic flow and then gradually introduce additional complications
in order to bring the model closer to actuzl rocket base flow
conditions.

Such a procedure is based on thg hypothesis that one can dee-
vise a two-dimensional flow model whose dynamic and thermgdynamic
behavior is qualitatively the same as the actual multi-nozzle
rocket., Some support for this spprosach comes from tha thecretical
analyses of Page et als as well as the experiments of Matzgo in
addition, since one is attempting, through trial and errox, to
synthesize a complaste trestwent from various alternative component
models, use of the comparatively simple two-dimensional geamegxy
is attractive from the standpoint of simplicity since one ¢an
concentrate on the physzical processes with a minimum cof complication
due solely to the geomatry.

Although thexe 1is considerzble experimental dmta {(see Ref. 10
for a compilation) for two~dimensional backsteps without mass bleed,
many investigators. as noted in the Leginning, have repoxted the

variation of only a single pressure in the base ragion. Thus
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case of base flow, were still laeking prior to the work of Thomks
who presented extensive data on the wall pressure distribution
throughout the entire backstep region &3 wall as the locatinn of
the dividing streamline impingemeni., Xven though these results
ware cbtained with an axi~symmetric geometry, the step height was
small compared to the body radius so that the base flow itself can
be considered nearly two-dimensional.

It should also be noted that, while similar wall pressure
distributions have alsc been reported by Hastingslz for a two-
dimensicnal geometrxy, the mathod of presentation of the resulis®
precludes a direct comparison with theory. Furthermore, noc mezsurs-—
ments of the dividing streamline impingement were made. As will be
subseguently observed, this latter information is extremely important
in the development of the present base flow model.

Relying on such experimental guidance, the initial phase of
the present investigation was therafore devot;d to further explo-~
xation of this classical problem with the axpectation that it would
provide the necessary background for future work. The flow model

which resulted from this portion of the study is discussed herein.

2 Base pressures are referenced zgainst a downstream pressure which
cannot be eagily calculated.
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) Although the majox cwmponentaé of the backstep flow fisld zyxe
well recognized, the aforementioned experimental studies of ZThomie
and ﬁastingé have yielded an imprgved vnderstanding of theirxr intexr-
actions. For example, it has been found that the presa2nce of an
upstream boundary layer affacis priwarily the minimum value of base
pressure and doe; not substantially altsr the general shapa of the
wall pressure distribution in the recowpression redion. Such

effects of boundary layers on minimum base pressure have teen pre-«

viously studied theorsetically by Kirkl3¢ ashB, and chonalds with

the rather siwple “equivalent mass bised" concept in conjunction
with a hypothetical fully developed mixing zone., %he sane technique
has been used in the present model and will be discussed in some
detsil later.

On the othar hand, soma of ths wmors significant findings of
these recent experimental investigatiens relate to the details of
the impingement of the mixing layer with the wall. Ths data
indicate that, at soms distamce above the wall, the shear layer
intoracts with the reverse flow which exists to presexve continuity.
This point of intezaction maxks the cornmencerent of recomprassion,
downstream of which the statie preassure is approximately equal to

its value upstgeam of the step, Inpingaaent of ths dividing stream~

“The spproach ilow, Prendtli-tleyer srpenalen, Inee wiwiag laya

-3 W3 LAV EY ,

impingenent and YECOMPLesElon DL, and redaveioping noundaXy layer.
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Line. which separatas the primacy £low irom that regirculated to
the bhase, occurs at a pcint about Qiéway through the prassure riss.

The reverse flow generated at the impingesment zone was
considered to be of major importancea since, with the multi-nozzlie
geometry, it is this flow which strikes the khase plate and is vented
between the nozzles. During the present study, therefore, special
attenticn was devoted tc the region downstream df the mixing zone~
reverse flow interaction. In the following sectiona each componant
of the present model is examinad in detail, By way of introduction,
howevaer, it is desirable to summsirize the treatment (see Pig. 1).

As noted previously, the effect of an approach boundary layer
is approximated by the method of Kirk which incorporates an asymptotic
turbulent mixzing thsory. Utilizing an eguivalent free jet for the
raverse wall flow, a criterion is developed for calenlation of the
wixing zona tezminktion or cutoff point. Downstream of this peint
the hypothetical inviscid flow is postulated to be an isentropic
centered-wave (Prandtl-Meyer) compressicn imn which the flow is
turned to the local wall directiomn.

In calcoulating the invigcid boundary the contikruous gompression
is replaced by a finite number of constent pressure stepe which
parmits further application of the iscberic mixing theory and the
integral continuity eguation so that the locus of ths dividiag

atrezmliine, between the cutoff station and its iwpingement point at

—fim



the wzll, can be determinad. It iz also snuwn that improved
pressure distributionz in the reccmpxe&sion region can be obktained
with a comparatively simple corxrection based on the downstream

boundary layer displacement thicknsss,

B. Espangion Zone and Mixing Layex

Although a detailed mathematical txaatman£ of the expanzion
of & shear flow around a corner ia availabkel4, it is not convenient
for engineering usage due to its complexity. On the other hand,
the approximate method (for zmallé) due to NashB. conzidering
isentropic expansion 0f each strezmtube in the boundary laver, leads
to a2 zimple ;elationship betwesn the initial (before expunsion) and
final (after expansion} valuss of the boundary layer momentum

thickness.

B¢ - (ﬂa@ U 'iyfﬂ:)co
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which, in ¢onjunction with the usual isentropic relaticns, and the

ideal gas eyuation of state bacomes

| KoL
ax P
Qf - (abc' N /Wca( (1)
S Pr /"fg@fg V

In this expression Pge is the static praessure after the expansion

and is egual to the base or cavity pressure, Thug, for

Pb'

specifised approach conditiosns (@i and ﬁ@@ } &uation {1} determines
i
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&f as a fansticon of the Prandil-Meoyer turning angle., ¥t ghould be
noted that the inaccurazies introduced from this expansion model
are largely compensated by tha iantegral miwing theory.

In the approximate @eﬁhod of Kirkl3 tha £inal boundary layer
momentum %hickness is matched to that of a hypothetical mixing
zone which begins at some virteal origin {(pecint O in Fig. 2). The
mixing layer coordinates (¥, ¥) are thus referrad to this peint
rathar than the corner as in the case of no approach boundary layer.
To determine the location of the virtual origin, expresaions are

reguired for ths eguivalent momantum thickness of the shear layer.

Therafeore, in the nomenclature of the Xoxrst theoxy, one obtains

%
* '0 (id
% g, (1" 8)

w
= (7- CJ,)% (%ﬁ"fz&)m {/—eﬁ,c);g_ﬁ T, {2)

Also
Sy = Y- %= ?ﬁéf " “*(’%)%] (3)

whara‘gzis the ilength of tha imaginary portion of the mixing

. 2 ,
layer, @ is the spread or growth rate parameter. and CGQ§ i8 the
Croceo nunber of the inviscid fliow sfter the Prandtl-Meyer expansion

{analogous to ¥ The suvhecxipts j. 4, end R in thesa eguations

@%‘!f)"
refer respectively to:

1. The dividing stresmline for zero mass bleed,



2 The dividing stresmline for finite mase Llead.

3. The effective edga of the mixing laver, l.e., whera u =y,

Fhe combination of eguations (1} and (2} yields an expression

P

for ¥, as a function of the Prandtl-Meysr angle o4 .

3

g@m e, 4 /$°)ﬂ ..A.Z'i&_,)

G- I 5y L dp Merf.
ol

(4}

It is also observed frem Fig. 2 that the perpendicular distancs,

o
Yo . from the inviscid jet boundary to the corner of the step is

Yo = ©p + Yu-Y, = 6y v"%—:‘,’(ty,,,—v;;)
{5)

Furthermora, in terms ¢f the primary space coordinates (x, V).
placed at the base of the step, one datexrmines the location of the
virtual origin aa

~N . g
XO = YQ Slﬁ’.& A -‘K@ @30{,

o P .
YO = h 'f")"o @S“«%M@ St o (5)
where h is the step height. The combinmtion of sguationz (L), (4),
{3) and (6) dstermines % and Y, for a particular expaneion angle.

How the mass flux which must be bled into the cavity to

simulate the boundary layer is given by

¥
. F o ony] R
7”5 2;} /ﬂ&id}j ;:[/3&(/"6;@_)7 .Eg [I;; = Ld>§J
dp @ ¥ - e
4 £ {7}



e xr N oA . . . . p - .
where *the value of {: Vg@ J; is determined from 2cuations (L), 7R} and
5

.

(4) . “he lomation of the dividing stresmline at the cuzoff point
fvhaxe X% = %l) is determined frow continnity considerations. i.e.,
the mass bleed dve tc the presence of the baoundary layer is
aguivalent to the mass flux between the j and d streamlines at the

cutoff point. Thus, from eguation (7).

~~
3‘(’0 [ Il,} “(E!eﬁ}%;} = X [_‘I‘g “{I‘d))?;}

or iy
X ,
(Iad>;;. = I,; - "-;;};;: [I.;—(I,d>§;j (8)

from which the value °f<ﬂ¢L' can be found directly.
X,

C. NMixing Zone Terminatiocn

| At the beginning of the nixing layerx-reverse wall flow intex-
action it is postulated that the veloeity profile for the lattax
is eguivalent to that of 2 jet whieh issues from a slot of infini-
tesimal width at some peint downstrsam (see Fig, 3}. Such a
simplification of course vicolates the wall boundary condition
although in the case of jet-to~-jet impingement this would not be
truve since the wall bacomes a plane of symmetry. The actual point
of interaction or mixing zone cutoff is determined frem two
considerations:

1, Phe mass flux in the wixing laver balow the dividing

gireanline wust egqual that in the reverse flow.

-l



2. The cuter edges Tuw 0} of both the mixing and ravelse
flow profiles must coincide (goint B of Fig. 3).
Kow the mass flux above the wall in ths reverse jet [(of toial

width 2b) is

L4

¥n = jcouwi7'= A i (?*‘Cgﬁ b Ly
‘A o~ 7 A [iQ)

&
whera O , «, C are xeforence guantitiss evaluatad along the wall
Ao lard e
at the cutocff point. The intagral IA iz gnalogous to the masz
R

flux integral X, in the Korst mixing theory. That is

i
/
1= [ Lo
N A
hers
where }-:y/b

= Ay = [ ~Canh Y
and K is a consztant (taken as 3 in the present model). It will ke

recallad that hyperbolic tangent profile has been established for

15

incompressible flow -~ . wWith such & universal profile X iz solely

A
2 o~
a function of C .
L
With isentropic rslations and the ideal gas state eguation,

exprassion (9} can be written as

=] Zé‘ ™
W = L ﬁ? iﬁ% (:éi 5 Ly
R 7e - (ﬁg 7 ~o

{10}

il



Therefore in aceordance wiith the pravizuz continuity statsasant,
the reverse mass flux is eguivalent to the mixing layer mass flux

below the dividing streamline, or

[& il

po %;ﬂ( o;*’ L (.z*,d),, = o M(é)ﬂr& 4 Za
£

(13}

From the gscmetry of Fig., 4 it is cbsexved that
Yo = b + Q%smv‘x, Stia ot
{12}
but the widih of the mixing zone below the inviscid jet boundary

is, in the Korst nawmenclature,
ga = %;f (k%7L3>
Thus egquation (12) becoma
b Yo — % Ef"ffm*fﬁ) Cosot + T Son o%]
- - {13)

FThe combination of equations (8}, (il), and (13} yields, aftex

i

rearxangamnent,
:’Z,- . h + Xo Sf&ﬂ@b ;‘-}’@ Cos =t
T Y Ié’“i K 6‘14;
GJ ﬁ::f 0 (/é, \ 3&{ {.j JJ)& £ (%méaj) Cosst 7}@”5}”&
~ ﬁ," ‘&e (LI .ﬁ'm fai ﬁ

At the cutoff point no transverse pressure gradients axe aduitted
g0 that the two static pressores appearing in the above eguation
are sgual, This simplification, alcng with sguations 2y, (43, (5)

and (3), psrmit sguation (24} to bes rewritten to



& 3
1 9 . ‘-\ 3 ) ’\.t %5 »
F;gl ¢y @,gj (/m Cs@r z’fJ/‘) '!fi;} (i Cn (’q ’@i\) Z'CQ 1
F - ?‘“{sﬁ i"'K K ] )
75?"’(?@) I 43 Gosst + T S
f“w. ﬁ? E&
4 (15}
vinere
z” I ~(Ta)z
Iq= 0 Simot # 0" ~#g)Coset 7 ) o =L )z,

Za

which gives the cutoff distance as a function of &« and P, fox

)

given approach conditions.

LEEN ompreasi

The theory of Korst ag well as the Chapman modol for iaminar
base flow employ an isentropic recompression criterion, viz.. it ig
postulated that the dividing strazmline possesses just sufficient
mechanical energy to recompress to the static pressure downstream
of reattachment., Thus all fluid below the dividing streamline
{fuga d) is recirculated tc the base.

In recent years this reccmprsssion model has been the source
of considerable misunderstanding among various invsstigators (for

example, H&shBB who have intsrpreted tha criterion very strictlys

the dividing streamline pust zetualiy undargo an igsntgopic

compression. Indeed, the resclution of this confusion was ona of

the primexy motivations of the aforemantioned study of Thomke.



Onn the other hand, the present analysis intsweprets tha
isentropic reguirement in a very iibaral gens2: the dividing
streamline is identified as the one whieh, at the cutoff point,
could be isentropically coumpressged to the downatream static prea-
sure, Purther discussion of this significant featura will be
subsequently presented.

The present model incorporatss a centered-wave compression
along the inviscid boundary bhetwean the cutoff point mnd the wall.
he apprapxlata gecmatry is depicted schematically in Pig. 5.
Considarad as known guantitics are the initial Prandt)-Meyer turn=~
‘ing angle.cK';'énd‘thé coordinates «xlg yl) of the cutoff point as
waell as the Mach pumbers befors ﬁﬁég,f§ and after (Mw) the com-
pression®, One must therefore detszmine first the location of the
origin (xe, ycP of the fan and from this the coordinates (xﬁ; yn)
of aay peint on the boundexy.

The wave origin is detezmined by xecalling the relatiounship

betwaen radial lines in centersd-wava (Franditl-Mayer) flowl7. vizg,
et

= EZ"I
r /T
pr 7/

so that, in the presant case,

#L#I
4., HT

=2, G/

sConseguantliy the eorresponding Mach sngles «y, and &,

.y



Now #xom the gecmetyy on2 can write

Ye =V
St (e, — o)
and
e b
Y = —2 . = Yo Muw {18)
Slh CJN
which, together with eguation (l6). yield
: L K
- Y To T v A
! b Mw Sh:v(w, ”0‘) ?’Mwﬁ : Q'uw
Hence r, and r  are known through equations (17) and (18).
Also from gescmetry
Xe = Ry
}" =
Cos (w,~)
or
Xe= Xy V) CosCer—al) (20)

which, with eguations {17} and (19}, dstermines x. . Ths peint (xag
at which the inviscid boundary becomas tangent to the wall is found

£xom the gecmetric relationship

Ko Xw = Ll (% -**Xw>

Cos My

P@y"

' 21}
e - ¥
Xw—){c“”fw(ﬁ‘?,:‘) LI"W

15



This syuation 18 used with egaations (i3} and (20) to find R
For any arbitrary point on the boundary. relations analogous

to egmtions {(18), (17}, and {28) c<an bs wiritten.

4. K
ﬁ:[gfﬁ) (.3;\ I ¢22)
. — }’ﬂ
Y = )jc. - {23)
St Ceoy= Vi)
= X Z7n i24)

C@S{i«)ﬁ&éj“)

Inzsmuch as any specified Mach numbex M (where M_< M <My, fé
immediataely determinea the Mach augle @3&“) and the chmngs in turning
angle (& = Yy, —¥y } from standazd relations, equations (22)
and (23) may be solved for y aad sguations (22) and (24) for X o

Since it is desired to apply an iaomic mixing theoxy along
the cuxved inviscid boundaxry, the contiauocus compraaéion ig approx-
imated by a largas number of constant prossure steps. %hus the
guantities assoclated with Mn are assumsad to be constant over a
small length segnent, the downstream end of which has coordinates =
and yn.

Shown gchematically im Fig, 6 is such a segunented boundary
with suparimpaséd mixing laysrs. In each sagmsnt the usual relation-

ship betwean transversse and lengitvdinal distances is assumad. That




is r] = T V/X "

where v’ is the usual homogeneous space coordinate. Recalling that
thg Koerst theory utilizes dual coordinate systems (physical and
intrinsic) which are parallel but separated vertically by a
distance ¥, one can write for the transverse distance dq from the
inviscid boundary

e _ [as ™-1um
d; = (¥ )’m.)M?’--== g_}” )‘]} (25)

Since the angular difference beatween any two segments is

small a second expression for dq iz sbtained in terms of Mn +1

d} = [15 (n ""'Fm)J (26)
T g+

Thus squations (25) and (26} can be solved for sq 1’ the virtual

origin for the (g+l)th segment, to give

§ — [Ag (V)"‘im)] [- o (27)
§o (e ?_ (n-Mwm) 2+

For the second interface one can write relations similar to (25)

and (26) for d

4[], - [22]
?—#Z.

~ — &51“‘5
S?_f:_"' [ - %)] [,,) ,)M};”‘ (28)

or



The combination of equations (27) and (28} thus yields

Jd = [AS M—r]...)] [AS 01-4».)]
;ﬂ o J?—ﬂ T v 2

In the same manner one obtains

= as(n-Nw) [‘55(’)“'?-")] + las(’l")*)]
di”‘ [ g ]~+z + ol ?n o ?

or in general

[ ASh- n».)J
=

Therefore the perpendicular distance hetween the inviscid boundary

and the dividing streamline at any point (s -Ei AS}.) along the
}.l
curved boundary is gjiven by

{29)

(), = pa [A S(Ma - ﬂm_)_};‘

Thus the coordinates of the dividing streamline (xd)vg,) are (Fig. 7)

(Xa)n-': Xn “"’(}’d).. S VYn

| ' (30)
(VQL\= X - (:Z:)" Cos P
Where x ., y . and >)n are, respectively, tha coordinates and turning

angle of the inviseid boundazy i}ee equations {22), (23), and (24):]°




The value of h, in equation {28) must be found from the
integral continuity equation. A relation equivalent to equation

{7) can be written for each pair of adjacent interfaces to give

b B[ s,
= o r[m(g)zf: s3+% (1, -I,a)J;}n

orxr
3k
[M(f_) 3K AS+§]
(I . ‘Ind) = (T _I,d) a- g+l
3"“ = (31)
[M( AR N
g Jge

However, use of equation (28}, with the edge of the mixing layer

{ V,R = constant) as a reference point, gives

CA.S-FS'}\ ( o_‘?) =
g’ ,éﬂ asS+8 /gy

(éj +( as+3\ (e-1w)g
o & 07&"’7*)9-# (32)
ﬁ) aAS+S (1e- ’)m):iu

F+2

T fu (e -nw)gre
Thus equations (31) and (32) determine I,, at any point (g2 )

along the boundary from which the corresponding value of Yl 4 is
found directly. Equations (28) through (32) thus enable ona to
move from the cutoff point toward the wall and calculate the locus

of the dividing streamline.

=1G=




Since the dividing streamline is always below the inviacid
bounﬂary {(which becomes tangent to the wall) the dividing stream-
line will eventually cross the wall {point D in Fig. 7). 3iIn the
present model this point of intersection is taken as the dividing
streamline impingemsant and the static pressure at this point is
taken as the stagnation pressure at thé wall (point P in Fig. 3)

for the reverse jet. That is
( 43».) = 4. (33)
M),=o o~
Thus the reverse jatruach nurber M, which also appears in equation

(15), is determined by the isentropic pressgure relation

b
;‘;--70(5‘3?)

N
where P, (=pf) is the static pressure downstream of the initial

{34)

Prandtl-Meyer expansion. The model thus postulates that the stream-
tuke of fluid just below the dividing streamline accelerates along
the wall toward the base, axpanding isentropically from a stagnation
prassure po at impingement to tha static pressure at the cutoff

o

point (pb or pf).

B. Reattaching Shsar lLayer Displacement Thickness

In the subsequent presentation of results, use will be made of
the displacement thicknesa of the reattaching shear layer as a
weans of improving the predicted pressure distribution in the
racompression region. Although it is recognized that the combi-
nation of a cantere&-w&ve compresaion and the iecbaric mixing




theory is highly approximate, it is also known that the wall shear
stress is of only minor significance in the reattachment process.
-PThus it is reasonable to expect that the mass flux in that portion
of the mixing layer above the wall approximates the mass flux in
the actual reattaching flow. The equivalent displacement thickness

for any isobaric segment of the inviscid bouhdary is then (see Fig. 7)

5 = / [1-(25) Jo

- (s ras [ o= In = (1= G Tig "I;w] (35)

= (5-}45) (\TQ"’IW)"
v &

where
Jn)= N - 0-C%) L n)

Using relations similar to those of the preceding section one

can write [3’ +as |
= (o - ]

(}{")" = e, (36)
where (Yd)n is known through equation (28). Thus

(§ +AS) = (y;)n

T In ('7“"7"')&

and equation (’35) becomes

w [ _ ] ’

The lower limit of i.ntcgrai:ion in equation (37) can be found by

combining equation (36) with a similar relation for (Y w’n to obtain

«2]le~




Yd - ‘?d’”m
Yw - 'I~‘7#

(ODNIORIUE) (¥a/ Ye),

but, from the geometry {(Pig. 7), one can relate Yw to the
coordinates and turning angle of the inviscid boundary by

(Yw)" = =)y Sec ¥y
Thus

('7'”)n = (Vfm), - (1a-"In), ( Y}Zec v)h

from which (J ') a is found directly.




F. Summary of Calculation Procedure

The procedure outlined below has been utilized to calculate base

flow fields with the present model.' A FORTRAN 63 program written

for the Control Data Corporation Type 1604 machine was developed for

this purpose.

Pox specified approach conditions (uw R Gi. and h)s

1.
2.

3.

5.
6.
7.

.

i
Assume a Prandtl-Meyer expansion angle <\

Assume a cutoff distance 'a‘;'l.

Locate the dividing streamline at cutoff with eguations
{(4) and (8).

Construct the centered-wave inviscid boundary between cutoff
and wvall. Pollow the dividing streamline to the wall and de-
termine 59 using the methods given in section IID.

Determine an improved value of S':'l with equation (15) .

Repsat steps 3 thrcugh 5 until the value of 'i’l converges.

Destermine the value of b from equation (11) and compare with

the lower edge of the mixing layer {(point E in Fig. 3).
Repeat steps 1 through 7 until the edges of the reverse jet
and mixing layer concide at the cutoff distance ?il.
If an improwved pressure distribution in the recompression
region is desired, compute the value of § " using the pro-
cedure of SQction IIE, aﬁ the point where the inviscid
ny begcues ta.ngeht to the ‘ﬁll {point x, in Pig. 5).
At this point move the wall up by the distance § *and. using
the final values of <\ and %

1
new inviscid boundary and impingement point.

found in step 8, construct a
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FIG. 5 SCHEMATIC OF CENTERED WAVE COMPRESSION ALONG
INVISCID BOUNDARY
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FIG. 6 APPLICATION OF ISOBARIC MIXING MODEL TO SEGMENTED
INVISCID BOUNDARY
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FI¢. 7 DETAILS OF REATTACHMENT REGION
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